L'immensa sputtanata a Zelig

Il blog che si sta visitando potrebbe utilizzare cookies, anche di terze parti, per tracciare alcune preferenze dei visitatori e per migliorare la visualizzazione. fai click qui per leggere l'informativa Navigando comunque in StrakerEnemy acconsenti all'eventuale uso dei cookies; clicka su esci se non interessato. ESCI
Cliccare per vederla

Scopo del Blog

Raccolgo il suggerimento e metto qui ben visibile lo scopo di questo blog.

Questo e' un blog satirico ed e' una presa in giro dei vari complottisti (sciacomicari, undicisettembrini, pseudoscienziati e fuori di testa in genere che parlano di 2012, nuovo ordine mondiale e cavolate simili). Qui trovate (pochi) post originali e (molti) post ricopiati pari pari dai complottisti al fine di permettere liberamente quei commenti che loro in genere censurano.

Tutto quello che scrivo qui e' a titolo personale e in nessun modo legato o imputabile all'azienda per cui lavoro.

Ciao e grazie della visita.

Il contenuto di questo blog non viene piu' aggiornato regolarmente. Per le ultime notizie potete andare su:

http://indipezzenti.blogspot.ch/

https://www.facebook.com/Task-Force-Butler-868476723163799/

Saturday, February 6, 2010

Metals and pathologies

http://tankerenemy.blogspot.com/2010/01/metals-and-pathologies.html

Metals and pathologies

Med Hypotheses. 2004;63(5):793-809.

Elevated levels of ferrimagnetic metals in foodchains supporting the Guam cluster of neurodegeneration: do metal nucleated crystal contaminants [corrected] evoke magnetic fields that initiate the progressive pathogenesis of neurodegeneration?
Purdey M.


High Barn Farm, Elworthy, Taunton, Somerset TA4 3PX, UK. tsepurdey@aol.com

Elevated levels of aluminium (Al), strontium (Sr), barium (Ba), iron (Fe), manganese (Mn) cations - combined with deficiencies of magnesium (Mg)/calcium (Ca) - have been observed in the foodchains that traditionally support the Chamorro populations affected by high incidence clusters of Alzheimer (AD), Parkinson-like (PD), motor neurone diseases and multiple sclerosis on the island of Guam. Soils drawn from the cluster region demonstrated an excessive fivefold increase in 'magnetic susceptibility' readings in relation to soils from disease free adjoining regions. A multifactorial aetiological hypothesis is proposed that pivots upon the combined exposure to high levels of natural/industrial sources of ferrimagnetic/ferroelectric compounds incorporating Al, Fe, Mn, Sr, Ba (e.g., via yam/seafood consumption or exposure to world war 2 (WW2) munitions) and to low levels of Mg/Ca in all S. Pacific locations where these clusters of neurodegenerative disease have simultaneously erupted. Once gut/blood brain barrier permeability is impaired, the increased uptake of Al, Fe, Sr, Ba, or Mn into the Mg/Ca depleted brain leads to rogue metal substitutions at the Mg/Ca vacated binding domains on various enzyme/proteoglycan groups, causing a broad ranging disruption in Mg/Ca dependent systems - such as the glutamine synthetase which prevents the accumulation of neurotoxic glutamate. The rogue metals chelate sulphate, disrupting sulphated-proteoglycan mediated inhibition of crystal proliferation, as well as its regulation of the Fibroblast growth factor receptor complex which disturbs the molecular conformation of those receptors and their regulation of transphosphorylation between intracellular kinase domains; ultimately collapsing proteoglycan mediated cell-cell signalling pathways which maintain the growth and structural integrity of the neuronal networks. The depression of Mg/Ca dependent systems in conjunction with the progressive ferrimagnetisation of the CNS due to an overload of rogue ferroelectric/ferrimagnetic metal contaminants, enables 'seeding' of metal-protein crystalline arrays that can proliferate in the proteoglycan depleted brain. The resulting magnetic field emissions initiate a free radical mediated progressive pathogenesis of neurodegeneration. The co-clustering of these various types of disease in select geographical pockets around the world suggests that all of these conditions share a common early life exposure to ferromagnetic metal nucleating agents in their multifactorial aetiology. Factors such as individual genetics, the species of metal involved, etc., dictate which specific class of disease will emerge as a delayed neurotoxic response to these environmental insults.

******

Mult Scler. 2006 Oct;12(5):533-40.

Elevated urinary excretion of aluminium and iron in multiple sclerosis.
Exley C, Mamutse G, Korchazhkina O, Pye E, Strekopytov S, Polwart A, Hawkins C.

Birchall Centre for Inorganic Chemistry and Materials Science, Lennard-Jones Laboratories, Keele University, Staffordshire, UK. c.exley@chem.keele.ac.uk

Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system of as yet unknown aetiology. A consensus of opinion has suggested that the disorder is the result of an interplay between environmental factors and susceptibility genes. We have used a battery of analytical techniques to determine if the urinary excretion of i) markers of oxidative damage; ii) iron and iii) the environmental toxin aluminium and its antagonist, silicon, are altered in relapsing-remitting (RRMS) and secondary progressive MS (SPMS). Urinary concentrations of oxidative biomarkers, MDA and TBARS, were not found to be useful indicators of inflammatory disease in MS. However, urinary concentrations of another potential marker for inflammation and oxidative stress, iron, were significantly increased in SPMS (P <> 0.05). Urinary concentrations of aluminium were also significantly increased in RRMS (P < 0.001) and SPMS (P < 0.05) such that the levels of aluminium excretion in the former were similar to those observed in individuals undergoing metal chelation therapy. The excretion of silicon was lower in MS and significantly so in SPMS (P < 0.05). Increased excretion of iron in urine supported a role for iron dysmetabolism in MS. Levels of urinary aluminium excretion similar to those seen in aluminium intoxication suggested that aluminium may be a hitherto unrecognized environmental factor associated with the aetiology of MS. If aluminium is involved in MS then an increased dietary intake of its natural antagonist, silicon, might be a therapeutic option.


Source: http://www.ncbi.nlm.nih.gov/

0 comments:

Post a Comment